600.112: Introduction to Programming
for Scientists and Engineers

Assignment 5: Learning from Echocardiograms*

Peter H. Fröhlich
phf@cs.jhu.edu

Joanne Selinski
joanne@cs.jhu.edu

Due Date: 2014/10/07 before 10:00 pm!

Introduction

The fifth assignment for 600.112: Introduction to Programming for Scientists and Engineers explores how we can use data to make predictions about the world. Specifically we’ll look at a very simple approach to supervised machine learning based on vector similarity. In the end, you’ll be able to predict (very roughly) how long someone who has suffered a heart attack will survive based on a few measurements from their echocardiogram.

There are three things to do: First you’ll write a module (not a complete program!) to perform basic statistics on sequences of numeric values; you’ll then use this module to write a program that computes some basic statistics about our echocardiogram data set. Second you’ll write a module to perform some basic calculations on vectors, including finding the “closest” or “most similar” vector out of many given vectors. Third you’ll use your module for vectors to write a program that—given training data from our echocardiogram data set—will predict the survival time for patients it wasn’t trained on.

There are detailed submission instructions on Piazza which you should follow to the letter! You can lose points if you create more work than necessary for the graders by not following the instructions.

1 Doing Statistics (20%)

For this problem you will write two Python files: First a module called stats.py that will contain a number of functions to perform basic statistics on sequences of numeric values, and second a program called analyze.py that will use stats.py to compute statistics on our echocardiogram data set. Please be sure to use the names stats.py and analyze.py and nothing else! Figure 1 shows what the output of your program will look like for the training.data data set.

Let’s start with the stats.py module. So far we’ve only ever used modules from the Python standard library, we’ve never written a module ourselves. Luckily it turns out that writing modules is not very different from writing regular Python programs! In fact the only difference is that all the code is inside functions, so you cannot “run” a module by itself.

Remember how we introduced functions? Writing a function allowed us to give a name to a piece of code that we wanted to reuse again and again: In-

*Disclaimer: This is not a course in physics or biology or epidemiology or even mathematics. Our exposition of the science behind the projects cuts corners whenever we can do so without lying outright. We are not trying to teach you anything but computer science!
Figure 1 Output of the analyze.py program.

Survival time statistics

<table>
<thead>
<tr>
<th>Maximum</th>
<th>Minimum</th>
<th>Average</th>
<th>Median</th>
<th>Variance</th>
<th>Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>57.0</td>
<td>10.0</td>
<td>29.56</td>
<td>27.0</td>
<td>145.09</td>
<td>12.05</td>
</tr>
</tbody>
</table>

Age statistics

<table>
<thead>
<tr>
<th>Maximum</th>
<th>Minimum</th>
<th>Average</th>
<th>Median</th>
<th>Variance</th>
<th>Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>80.0</td>
<td>35.0</td>
<td>60.67</td>
<td>61.0</td>
<td>61.78</td>
<td>7.86</td>
</tr>
</tbody>
</table>

Instead of having to copy and paste the code, we could just call the function. Modules allow us to package up several related functions which can then be reused again and again. Even better, we can reuse modules in several programs whereas we can only reuse functions in one program, namely the one we put the function into.

In order to make all this more concrete, let’s look at a first version of the stats.py module, a version that doesn’t really do anything yet but illustrates the basic structure:

```python
def average(seq):
    pass

def median(seq):
    pass

def variance(seq):
    pass

def deviation(seq):
    pass
```

What we have here is just a Python file with a bunch of functions in it. And that’s all a module really is: A Python file with a bunch of functions in it! However, as soon as we have a this stats.py file, we can actually import it and then call its functions:

```python
>>> import stats
>>> stats.average([])
>>> stats.variance([])
>>> stats.undefined()
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
    AttributeError: 'module' object has no attribute 'undefined'
```

Of course neither average nor variance do anything yet, but we can at least call them. Note that Python will respond with an error message if we try to call a function that we did not actually define in the stats.py module. So in other words, if we have a number of functions that we would like to reuse again and again in many programs, we can put them into a module and then later import the module to access them.

Now you may wonder how we will test a module like stats.py if we cannot actually run it. The answer is that we’ll use unit tests in the form we discussed in lecture! For example, here are the documentation as well as some test cases for the average function:

```python
def average(seq):
    """
    Average value of sequence.
    """
    >>> average([])
    0.0
    >>> average([1]*100)
    1.0
    >>> average([1.0,2.0,3.0])
    2.0
    >>> average([1.0,2.0,3.0])
    2.0
    """
    pass
```

Of course all these test cases will fail for now, but at least we have a way to make sure the function works as expected. The code to implement the average function:

```python
"""
Average value of sequence.
"""
    >>> average([])
    0.0
    >>> average([1]*100)
    1.0
    >>> average([1.0,2.0,3.0])
    2.0
    >>> average([1.0,2.0,3.0])
    2.0
    """
    pass
```
function is not very complicated: we simply have to sum up all the elements in the given sequence and then divide by the length of the sequence. The only “tricky” thing is that we want an empty list to have an average of zero, so we need to handle that with an if instruction. Here is the finished average function that passes all its test cases:

```python
def average(seq):
    """
    Average value of sequence.
    """
    if len(seq) == 0:
        return 0
    s = sum(seq)
    return s / len(seq)
```

Now we can actually play with the function from outside of stats.py as well:

```python
>>> import stats
>>> stats.average([1, 2, 3, 4])
2.5
>>> stats.average([1.0, 2.0, 3.0, 4.0])
2.5
```

Each of the remaining functions median, variance, and deviation will need documentation and test cases as well, and here they are:

```python
def median(seq):
    """
    Median value of sequence. For a sequence of odd length, the median is the middle element of the sorted sequence; for a sequence of even length, the median is the average of the two middle values.
    """
    c = len(seq)
    if c == 0:
        return 0
    s = sum(seq)
    return s / c
```

```python
def variance(seq):
    """
    Variance of a sequence. The variance of sequence S is the average of the squared distances of each element of S from the average of S.
    """
    pass
```

```python
def deviation(seq):
    """
    Standard deviation of a sequence. The standard deviation of sequence S is the square root of the variance of S.
    """
    pass
```

```python
>>> median([1])
0.0
>>> median([11])
1.0
>>> median([1, 1])
1.0
>>> median([1, 1, 2, 3, 10])
2.0
>>> median([1, 1, 1, 3, 10])
2.0
>>> median([1, 1, 4, 4, 10, 12])
3.0
>>> median([1, 1, 4, 4, 10, 12])
4.0
```

```python
>>> variance([1])
0.0
>>> variance([1])
0.0
>>> variance([1, 1, 1, 1])
0.0
>>> round(variance([1, 2, 3, 4, 5, 6]), 3)
2.917
>>> variance([1, 2, 3, 4, 5, 6, 7])
4.0
>>> round(variance([1.0, 2.0, 3.0, 4.0, 5.0, 6.0]), 3)
2.917
```

```python
>>> round(deviation([1]), 1)
0.0
```
We won’t repeat all of these again, so make sure you check back when we discuss how to write the code for each function.\footnote{We're using the \texttt{round} function in some of the test cases. Given a floating point value x, the call \texttt{round(x, 4)} will return x rounded to four significant digits after the decimal point. In our test cases, \texttt{round} allows us to write down only the first few digits of a potentially very long floating point value.}

The \texttt{median} function is next. Note that we need to calculate the median of a sequence of \textit{even} length differently from the median of a sequence of \textit{odd} length. One way to check if an integer is even or odd is to divide it by 2 and look at the remainder of that division: If the remainder is 0 the integer was even, if it is 1 the integer was odd. In Python, the \texttt{modulo} operator \% computes (for positive integers anyway) the remainder. This leads to the following code:

```python
def median(seq):
    c = len(seq)
    if c == 0:
        return 0.0
    s = sorted(seq)
    m = c // 2
    if c % 2 == 1:
        return float(s[m])
    else:
        return average(s[m - 1:m + 1])
```

Note that we can call our \texttt{average} function from within the \texttt{median} function since they are both defined in the same module!

The \texttt{variance} function sounds much more complicated at first. We need to compute an average, then compute the squared distance of each element in the sequence from said average, and then finally average all of those squared distances again. However, with the \texttt{average} function at our disposal, two of those three steps become very simple. Computing one squared distance is also easy, but note that we need squared distances for \textit{all} the original values! But nothing easier than that: We simply build a new sequence using the \texttt{append} function on lists! It may come as a bit of a surprise, but the resulting code for \texttt{variance} is actually \texttt{shorter} than either of the previous two functions:

```python
def variance(seq):
    a = average(seq)
    s = []
    for x in seq:
        s.append((x - a) ** 2)
    return average(s)
```

Finally we have to write the code for \texttt{deviation} which requires that we compute a square root. We could write code for that task, but Python actually comes with a \texttt{math} module that provides a \texttt{sqrt} function for exactly that purpose. So what we’ll do is we’ll import the \texttt{math} module into the \texttt{stats} module we are writing! Once we do that, \texttt{deviation} also becomes very easy to write. Here are the missing pieces of the module as well as the \texttt{deviation} function itself:

```python
import math

def deviation(seq):
    return math.sqrt(variance(seq))
```

And we’re done with the \texttt{stats.py} module. At this point you may want to run all the test cases one more time, and you also may want to check that there are no style problems left in your code (we showed you how to do this using \texttt{pep8} in lecture).

After all this code it may be hard to recall that we’re not done yet: We still need to write the \texttt{analyze.py} program that produces the output shown in Figure 1. It’s clear that we’ll use the functions we have in \texttt{stats.py} to do the actual statistics.
tics, but what does the input look like. The first three lines of the file `training.data` that was posted on Piazza together with this assignment look like this:

```
11 71 0 0.260 9 4.600 1
19 72 0 0.380 6 4.100 1.700
16 55 0 0.260 4 3.420 1
...
```

Each line contains seven numbers, and each of these numbers has a certain meaning. As a reminder, the data set describes patients who had a heart attack. The second number on each line is the age at which a patient suffered their heart attack. The first number of each line corresponds to the months they were alive after their heart attack. So the first patient had a heart attack at 71 years of age and died 11 months after the heart attack.\(^2\) The remaining five numbers describe the condition of the patient’s heart in more detail; for us it won’t be important what all the numbers mean, but just in case you are pre-med:

3rd Pericardial effusion (1=yes 0=no)
4th Fractional shortening
5th E-point septal separation
6th Left ventricular end-diastolic dimension
7th Wall motion index

For the `analyze.py` program we actually only need the age and the survival time of each patient.

At this point it’s a good idea to develop a basic outline for the program by thinking through what we’ll have to do. We’ll certainly need to read in the `training.data` file line by line (something we’ve done before). From each line, we need to extract the patient’s age and survival time. Since we are supposed to compute statistics over all patients, and since our functions in `stats.py` expect that we pass in a list, we’ll have to build two lists: One containing all the ages, the other containing all the survival times. The output we’re required to produce is almost identical for both ages and survival times, so we’ll write a function instead of copy/pasting the same code twice. Finally the output should only have two digits after the decimal point for each value, something we’ll have to take care of somewhere as well; presumably we’ll write yet another function for that purpose.

With a rough plan in hand, we can write the first version of the program. Let’s start by just reading in the file and printing it back out:

```python
def main():
    data = open("training.data")
    for line in data:
        line = line.strip()
        print(line)
data.close()
main()
```

As always, this first version doesn’t do anything close to what we want to end up with, but it gives us a starting point that actually works.\(^3\) The `line` variable holds a complete line as a single string, but we need to extract individual fields. Luckily Python strings have a very convenient function for this purpose:

```
>>> "Here is a string".split()
[‘Here’, ‘is’, ‘a’, ‘string’]
```

The `split` function breaks apart a string on white-space, returning a list of the individual “words” in the string. This will work just the same on one of our lines, and we’ll be able to access individual fields by indexing into the list as follows:

```
>>> fs = "11 71 0 0.260 9 4.600 1".split()
>>> fs
```

2. The exact cause of death is not necessarily related to the heart condition, but that’s something we’ll conveniently ignore.

3. To save space, we won’t include any documentation in the following code examples. Of course the version you hand in should have all the required documentation in place.
>>> fs[0]
'11'
>>> fs[1]
'71'

One more thing to note: We get back the data we want in the form of strings, but of course we want to have them in the form of actual numbers to perform our statistical computations on them. So we end up with this next version of our program:

```python
def main():
data = open("training.data")
for line in data:
    line = line.strip()
    fields = line.split()
    time = float(fields[0])
    age = float(fields[1])
    print(time, age)
data.close()

main()
```

Now we need to add the lists that collect all the survival times and all the ages of the various patients:

```python
def main():
times = []
ages = []
data = open("training.data")
for line in data:
    line = line.strip()
    fields = line.split()
    time = float(fields[0])
    age = float(fields[1])
times.append(time)
age.append(age)
data.close()
    print_statistics("Survival_time", times)
    print_statistics("Age", ages)
main()
```

This is all the processing we need to do on the data we read in. Now that we have two lists of floating point values, we can compute statistics on them using the `stats` module we wrote before. So we have to turn out attention to doing that and also to formatting the output. For each list of values, we need to print the same sorts of statistics, just with a different heading in front of the numbers. So we’ll write a function `print_statistics` that takes two parameters: The heading to print, and the list of data to process. Let’s write a first version of that function so that we can finish the main program:

```python
def print_statistics(name, values):
    print(name)
    print(values)

def main():
times = []
ages = []
data = open("training.data")
for line in data:
    line = line.strip()
    fields = line.split()
    time = float(fields[0])
    age = float(fields[1])
    print(time, age)
data.close()
    print_statistics("Survival_time", times)
    print_statistics("Age", ages)
main()
```

If you look at Figure 1 closely, you’ll notice that we need to add the “statistics” after the heading itself. Then we need to compute and print each of the following values for the data in question: minimum, maximum, average, median, variance, and standard deviation. Each of these values is printed with at most two digits after the decimal point. Let’s attack that last aspect first and write a function that prints one line of the actual data output:

```python
def print_value(name, value):
    print(name + " : ", round(value, 2))
```

So what we hand this function is a name like “Maximum” and the corresponding value, and the func-
tion will take care of formatting everything properly. With this in place, it’s easy (if tedious) to finish the `print_statistics` function itself:

```python
code snippet
```

Don’t forget to add `import stats` at the top of your program so that our statistics functions can actually be accessed. And done!

2 Vector Tools (40%)

The second thing you will write is a module called `vecs.py` that contains several functions operating on vectors. For the rest of this assignment, we’ll consider lists of floating point numbers to be “vectors” in certain contexts, and we mean “vectors” in the sense of mathematical vectors, i.e. quantities with a length and an orientation. For example, the lists `[0.0, 1.0]` and `[1.0, 0.0]` are the (two-dimensional) unit vectors along the x and y axis. Obviously a list with `n` values corresponds to an `n`-dimensional vector; don’t be freaked out by this, vector is vector regardless of how many dimensions it has.

The module `vecs.py` will provide the following functions:

- **`dot(a, b)`** is the dot product (scalar product) of vectors `a` and `b`
- **`length(a)`** is the (Euclidian) length of vector `a` (the same as `\sqrt{\text{dot}(a, a)}` it turns out)
- **`cosine_distance(a, b)`** is the cosine of the angle between vectors `a` and `b` (calculated by `\cos \phi = \frac{\text{dot}(a, b)}{\text{length}(a) \cdot \text{length}(b)}` as it turns out)
- **`angle_distance(a, b)`** is the angle (in radians) between vectors `a` and `b` (see above, just use `math.acos` to get the angle from the cosine)
- **`squared_euclidian_distance(a, b)`** is the sum squared component distances `\sum (a_i - b_i)^2`
- **`euclidian_distance(a, b)`** is the square root of the above sum

Finally, and most importantly, the module will provide the following function which requires a bit more explanation:

```python
code snippet
```

Here `data` is a sequence of vectors while `sample` is a single vector. All vectors involved must have the same dimensionality, otherwise the operation won’t work correctly. The `distance` parameter is the distance function to use. In other words, the code inside of `find_closest_vector` doesn’t call any of the previously defined distance functions directly, it calls whatever function was passed in under the name `distance`. What the function computes is the index of the vector in `data` that has the smallest `distance` to the `sample` vector. For example:

```python
code snippet
```
In the first case, the angle between the sample and the x-axis is smaller, so the index 0 indicating the x-axis is returned. In the second case, the angle between the sample and the y-axis is smaller, so the index 1 indicating the y-axis is returned. Implementing this function means that you have to compute the distance between the sample and each vector in data; you need to keep track of the smallest distance so far and of the index in data for which that smallest distance was computed; when you have tried every possible choice from data you’ll know which vector is closest to the sample and you can return that vector’s index in data.

Here is the first version of the module that you should start from:

def dot(a, b):
 pass

def length(a):
 pass

def squared_euclidian_distance(a, b):
 pass

def euclidian_distance(a, b):
 pass

def cosine_distance(a, b):
 pass

def angle_distance(a, b):
 pass

def find_closest_vector(data, sample, distance):
 pass

Remember that you’ll need to add not only the code but also the documentation and the test cases! Since many of these functions will return floating point values, it’s important that you use the round function again in your test cases (see the example of this in Problem 1). For example, here is a test case “for free” that illustrates why this is important:

>>> round(angle_distance([0.0, 1.0], [0.0, -1.0]), 3)
3.142

If you didn’t include the round you’d have to type π to a ridiculous number of digits in order to make the test case pass, something you don’t want to do.

By the way, the longest of these functions requires 8 lines of code, many only require one. The hard part for this problem is to come up with the appropriate test cases! Don’t just have one test case, that’s certainly not enough to make sure that a function works.

A suggestion: In lab, write the test cases for a function first, discuss them with your TA, then write the code to make the test cases pass; do this one function at a time.

3 Predicting Survival (40%)

The third program you will write is going to use our echocardiogram data set to “learn” how patient age and the various heart measurements relate to the survival time of a patient after suffering a heart attack. Please call your program predict.py and nothing else! Figure 2 shows what the output of your program will look like, at least approximately.

The approach we’ll take for our predictions is rather naive. We’ll read the training.data data set and for each patient we’ll remember their survival time in one list and the remaining data as a vector of floats in another list. We’ll then read the validate.data data set and for each new patient we’ll predict their survival time by finding the closest vector to their new measurements in our training data. Say that for the first patient from validate.data we find that the 7th vector of our training data set is closest; that means that our predicted survival time would be the 7th survival time we read in earlier. In other words, when we’re presented with a new set of echocardiogram measurements (and patient age) we find the closest set of echocardiogram measurements (and patient age) for
Figure 2 Output of the predict.py program using squared Euclidian distance for similarity.

Survival times

<table>
<thead>
<tr>
<th>Predicted</th>
<th>Actual</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>53.0</td>
<td>26.0</td>
<td>1.04</td>
</tr>
<tr>
<td>53.0</td>
<td>12.0</td>
<td>3.42</td>
</tr>
<tr>
<td>25.0</td>
<td>49.0</td>
<td>0.49</td>
</tr>
<tr>
<td>53.0</td>
<td>49.0</td>
<td>0.08</td>
</tr>
<tr>
<td>12.0</td>
<td>47.0</td>
<td>0.74</td>
</tr>
<tr>
<td>40.0</td>
<td>41.0</td>
<td>0.02</td>
</tr>
<tr>
<td>25.0</td>
<td>33.0</td>
<td>0.24</td>
</tr>
<tr>
<td>44.0</td>
<td>29.0</td>
<td>0.52</td>
</tr>
<tr>
<td>50.0</td>
<td>41.0</td>
<td>0.22</td>
</tr>
<tr>
<td>34.0</td>
<td>26.0</td>
<td>0.31</td>
</tr>
<tr>
<td>27.0</td>
<td>15.0</td>
<td>0.8</td>
</tr>
</tbody>
</table>

Error statistics

- Maximum: 3.42
- Minimum: 0.02
- Average: 0.72
- Median: 0.49
- Variance: 0.82
- Deviation: 0.91

which we already know the survival time and we predict that.

However, just spitting out predictions is not enough: We would like to know how good our predictions actually are! Luckily the second data set also has survival times, namely the actual survival time for that patient. By comparing our predicted survival time to the actual survival time for all new patients, we can get some idea of whether our approach is actually better than just flipping coins at random. So for each new patient we compute the relative error

\[e = \frac{|\text{predicted} - \text{actual}|}{\text{actual}} \]

we made, and we collect all the errors and finally compute some statistics as shown at the end of Figure 2. Apparently we’re not doing too well, at least not when using the squared Euclidian distance metric: We’re 70% wrong on average, but at least in the median we’re slightly better than just flipping coins (but see below).

Note that it’s important that none of the patients from our second data set are in the first data set! If they had been, we’d always produce perfect predictions because for one of our many vectors, the distance to a “new” patient would be zero. This process of using one data set for training and another one for measuring how good our predictions are is called cross-validation; without cross-validation and some evidence that we’re actually making decent predictions, we may just as well save ourselves the trouble of making predictions at all.

Obviously the current approach to predicting survival times is not too great. What you should do once you have finished your program is play with the various distance metrics that the vecs.py module offers. See if you can find a metric that does better. If you do, try to figure out why it does better and talk about your insights in your README file.